Aniline



Aniline
Other names Phenylamine
Aminobenzene
Benzenamine
Identifiers
CAS number 62-53-3
SMILES NC1=CC=CC=C1
Properties
Molecular formula C6H7N
Molar mass 93.126 g/mol
Appearance colorless liquid
Density 1.0217 g/ml, liquid
Melting point

−6.3 °C

Boiling point

184.13 °C

Solubility in water 3.6 g/100 mL at 20°C
Acidity (pKa) 4.87
Basicity (pKb) 9.40
Viscosity 3.71 cP (3.71 mPa·s at 25 °C
Thermochemistry
Std enthalpy of
combustion
ΔcHo298
-3394 kJ/mol
Hazards
MSDS External MSDS
EU classification Toxic (T)
Muta. Cat. 3
Dangerous for
the environment (N)
NFPA 704
2
3
0
 
R-phrases R23/24/25, R40, R41, R43, R48/23/24/25, R68, R50
S-phrases S63
Related Compounds
Related aromatic amines 2-Naphthylamine
Related compounds Nitrobenzene
Supplementary data page
Structure and
properties
εr, etc.
Thermodynamic
data
Phase behaviour
Solid, liquid, gas
Spectral data MS
Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)

Infobox disclaimer and references

Aniline, phenylamine or aminobenzene is an polyurethane. Like most volatile amines, it possesses the somewhat unpleasant odour of rotten fish and also has a burning aromatic taste; it is a highly-acrid poison. It ignites readily, burning with a smoky flame.


Structure and synthesis

Consisting of a benzene:

First, benzene is cumene. [1]

Derivatives

Many derivatives of aniline can be prepared in similar fashion. In commerce, three brands of aniline are distinguished--aniline oil for blue, which is pure aniline; aniline oil for red, a mixture of equimolecular quantities of aniline and ortho- and para-toluidines; and aniline oil for safranine, which contains aniline and ortho-fuchsine fusion.

Properties

Oxidation

Aniline is colourless, it slowly Hypochlorous acid gives 4-aminophenol and para-amino diphenylamine.

Basicity

Aniline is a weak ammonia from its salts.

Acylation

Aniline reacts with carboxylic acids[2] or more readily with acetic acid and aniline.

N-alkyl derivatives

Aniline combines directly with alkyl iodides to form secondary and tertiary amines. Monomethyl and dimethyl aniline are colourless liquids prepared by heating aniline, aniline hydro-chloride and methyl alcohol in an autoclave at 220 °C. They are of great importance in the colour industry. Monomethyl aniline boils at 193-195 °C, dimethyl aniline at 192 °C.

Sulfur derivatives

Boiled with guanidine, C6H5N=C(NHC6H5)2.

Like sulfanilic acid, NH2C6H4SO3H.

Diazotization

Aniline and its ring-substituted derivatives react with nitrous acid to form diazonium salts. Through these, the -NH2 group of aniline can be conveniently converted to -OH, -CN, or a Sandmeyer reactions.

Other reactions

It reacts with nitrobenzene to produce phenazine in the Wohl-Aue reaction.

Uses

The great commercial value of aniline was due to the readiness with which it yields, directly or indirectly, indulines, for more details on this subject. In addition to its use as a precursor to dyestuffs, it is a starting-product for the manufacture of many drugs, such as paracetamol (acetaminophen, Tylenol).

It is used to stain neural RNA blue in the Nissl stain.

At the present time, the largest market for aniline is preparation of rubber processing chemicals (9%), herbicides (2%), and dyes and pigments (2%).[3]

History

Aniline was first isolated from the destructive distillation of August Wilhelm von Hofmann investigated these variously-prepared substances, and proved them to be identical (1855), and thenceforth they took their place as one body, under the name aniline or phenylamine.

Its first industrial-scale use was in the manufacture of William Henry Perkin. At the time of mauveine's discovery, aniline was an expensive laboratory compound, but it was soon prepared "by the ton" using a process previously discovered by Antoine Béchamp.[5] The synthetic dye industry grew rapidly as new aniline-based dyes were discovered in the late 1850s and 1860s.

p-Toluidine, an aniline derivative, can be used in qualitative analysis to prepare carboxylic acid derivatives.

Toxicology

Aniline is toxic by inhalation of the vapour, absorption through the skin or swallowing. It causes headache, drowsiness, cyanosis, and mental confusion, and, in severe cases, can cause convulsions. Prolonged exposure to the vapour or slight skin exposure over a period of time affects the nervous system and the blood, causing tiredness, loss of appetite, headache, and dizziness.[6]

Oil mixtures containing rapeseed oil denatured with aniline have been clearly linked by epidemiological and analytic chemical studies to the toxic oil syndrome that hit Spain in the spring and summer of 1981, in which 20,000 became acutely ill, 12,000 were hospitalized, and more than 350 died in the first year of the epidemic. The precise etiology though remains unknown.

Some authorities class aniline as a Group 3 (not classifiable as to its carcinogenicity to humans) due to the limited and contradictory data available.

References

  1. ^ Thomas Kahl, Kai-Wilfrid Schröder, "Aniline" in Ullmann's Encyclopedia of Industrial Chemistry 2007; John Wiley & Sons: New York.
  2. ^ Carl N. Webb (1941). "Benzanilide". Org. Synth.; Coll. Vol. 1: 82. 
  3. ^ "Aniline", The Chemical Market Reporter. Retrieved on 2007-12-21. 
  4. ^ Otto Unverdorben (1826). "Ueber das Verhalten der organischen Körper in höheren Temperaturen". Annalen der Physik 84 (11): 397-410. doi:10.1002/andp.18260841109.
  5. ^ Perkin, William Henry. 1861-06-08. "Proceedings of Checmical Societies: Chemical Society, Thursday, May 16, 1861." The Chemical News and Journal of Industrial Science. Retrieved on 2007-09-24.
  6. ^ Muir, GD (ed.) 1971, Hazards in the Chemical Laboratory, The Royal Institute of Chemistry, London.

This article incorporates text from the Encyclopædia Britannica Eleventh Edition, a publication now in the public domain.

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Aniline". A list of authors is available in Wikipedia.