Cell signaling



Cell signaling is part of a complex system of communication that governs basic cellular activities and coordinates cell actions. The ability of cells to perceive and correctly respond to their microenvironment is the basis of development, tissue repair, and immunity as well as normal tissue homeostasis. Errors in cellular information processing are responsible for diseases such as cancer, autoimmunity, and diabetes. By understanding cell signaling, diseases may be treated effectively and, theoretically, artificial tissues may be yielded.

Traditional work in biology has focused on studying individual parts of cell signaling pathways. Systems biology research helps us to understand the underlying structure of cell signaling networks and how changes in these networks may affect the transmission and flow of information.

Unicellular and multicellular organism cell signaling

  Cell signaling has been most extensively studied in the context of human diseases and signaling between cells of a single organism. However, cell signaling may also occur between the cells of two different organisms. In many mammals, early embryo cells exchange signals with cells of the uterus.[1] In the human gastrointestinal tract, bacteria exchange signals with each other and with human epithelial and immune system cells.[2] For the yeast Saccharomyces cerevisiae during mating, some cells send a receptor on other yeast cells and induce them to prepare for mating.[3]

Types of signals

  Some cell-to-cell communication requires direct cell-cell contact. Some cells can form action potential propagation from the cardiac pacemaker region of the heart to spread and coordinately cause contraction of the heart.

The Notch signaling mechanism is an example of juxtacrine signalling (also known as contect dependant signaling) in which two adjacent cells must make physical contact in order to communicate. This requirement for direct contact allows for very precise control of cell differentiation during embryonic development. In the worm Caenorhabditis elegans, two cells of the developing gonad each have an equal chance of terminally differentiating or becoming a uterine precursor cell that continues to divide. The choice of which cell continues to divide is controlled by competition of cell surface signals. One cell will happen to produce more of a cell surface protein that activates the Notch receptor on the adjacent cell. This activates a feedback loop or system that reduces Notch expression in the cell that will differentiate and increases Notch on the surface of the cell that continues as a stem cell.[4]

Many cell signals are carried by molecules that are released by one cell and move to make contact with another cell. Estrogen can be released by the ovary and function as a hormone or act locally via paracrine or autocrine signaling.[6]

Receptors for cell signals

Cells receive information from their environment through a class of proteins known as receptor ligands. The details of ligand-receptor interactions are fundamental to cell signaling.

As shown in Figure 2 (above, left), Notch acts as a receptor for ligands that are expressed on adjacent cells. While many receptors are cell surface proteins, some are found inside cells. For example, estrogen is a Estrogen receptors inside cells of the uterus can be activated by estrogen that comes from the ovaries, enters the target cells, and binds to estrogen receptors.

Other signaling molecules are unable to permeate the hydrophobic cell membrane due to their hydrophilic nature, so their target receptor is expressed on the membrane. When such signaling molecule activates its receptor, the signal is carried into the cell usually by means of a second messenger such as cAMP.

Signaling pathways

 

In some cases, receptor activation caused by ligand binding to a receptor is directly coupled to the cell's response to the ligand. For example, the neurotransmitter signal transduction mechanism or pathway.

In the case of Notch-mediated signaling, the signal transduction mechanism can be relatively simple. As shown in Figure 2 (above, left), activation of Notch can cause the Notch protein to be altered by a transcription in the cell nucleus. This causes the responding cell to make different proteins, resulting in an altered pattern of cell behavior. Cell signaling research involves studying the spatial and temporal dynamics of both receptors and the components of signaling pathways that are activated by receptors in various cell types.

A more complex signal transduction pathway is shown in Figure 3. This pathway involves changes of MYC and thus alter gene transcription and, ultimately, cell cycle progression. Many cellular proteins are activated downstream of the growth factor receptors (such as EGFR) that initiate this signal transduction pathway.

Some signaling transduction pathways respond differently depending on the amount of signaling received by the cell. For instance the hedgehog protein activates different genes depending on the amount of hedgehog protein present.

Complex multi-component signal transduction pathways provide opportunities for feedback, signal amplification, and interactions inside one cell between multiple signals and signaling pathways.

Classification of intercellular communication

Within endocrinology (the study of intercellular signalling in animals) and the endocrine system, intercellular signalling is subdivided into the following classifications:

  • Endocrine signals are produced by endocrine cells and travel through the blood to reach all parts of the body.
  • Paracrine signals target only cells in the vicinity of the emitting cell. Neurotransmitters represent an example.
  • Autocrine signals affect only cells that are of the same cell type as the emitting cell. An example for autocrine signals is found in immune cells.
  • Juxtacrine signals are transmitted along cell membranes via protein or lipid components integral to the membrane and are capable of affecting either the emitting cell or cells immediately adjacent.

See also

  • Cell Signaling Networks
  • Molecular Cellular Cognition

References

  1. ^ O. A. Mohamed, M. Jonnaert, C. Labelle-Dumais, K. Kuroda, H. J. Clarke and D. Dufort (2005) "Uterine Wnt/beta-catenin signaling is required for implantation" in Proceedings of the National Academy of Sciences of the United States of America Volume 102, pages 8579-8584. Entrez PubMed 15930138.
  2. ^ M.B. Clarke and V. Sperandio (2005) "Events at the host-microbial interface of the gastrointestinal tract III. Cell-to-cell signaling among microbial flora, host, and pathogens: there is a whole lot of talking going on" in American journal of physiology. Gastrointestinal and liver physiology. Volume 288, pages G1105-9. Entrez PubMed 15890712.
  3. ^ J. C. Lin, K. Duell and J. B. Konopka (2004) "A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled alpha-factor receptor" in Molecular Cell Biology Volume 24, pages 2041-2051. Entrez PubMed 14966283.
  4. ^ I. Greenwald (1998) "LIN-12/Notch signaling: lessons from worms and flies" in Genes in Development Volume 12, pages 1751-1762. Entrez PubMed 9637676.
  5. ^ M. C. Cartford, A. Samec, M. Fister and P. C. Bickford (2004) "Cerebellar norepinephrine modulates learning of delay classical eyeblink conditioning: evidence for post-synaptic signaling via PKA" in Learning & memory Volume 11, pages 732-737. Entrez PubMed 15537737.
  6. ^ S. Jesmin, C. N. Mowa, I. Sakuma, N. Matsuda, H. Togashi, M. Yoshioka, Y. Hattori and A. Kitabatake (2004) "Aromatase is abundantly expressed by neonatal rat penis but downregulated in adulthood" in Journal of Molecular Endocrinology Volume 33, pages 343-359. Entrez PubMed 15525594.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Cell_signaling". A list of authors is available in Wikipedia.