Ikaite



Ikaite is the mineral name for the hexahydrate of crystals within sediment that grow to macroscopic size, occasionally with good crystal form. There is strong evidence that some of these marine deposits are associated with cold seeps.

Ikaite crystallizes in the space group C2/c with lattice parameters a~8.87A, b~8.23A, c~11.02A, β~110.2°. The structure of ikaite consists of an ion pair of (Ca2+CO32-)0 surrounded by a cage of hydrogen-bonded water molecules which serve to isolate one ion pair from another.  

Stability

Synthetic ikaite was discovered in the nineteenth century in a study by Pelouze. Ikaite is only monohydrocalcite or anhydrous calcium carbonate phases and water, earning the nickname of the melting mineral.

Pseudomorphs

The presence of ikaite may be recorded through geological time through the presence of calcium carbonate phases after it. Although it can be hard to uniquely define the original mineral for every specimen, there appears to be good evidence for ikaite as the precursor for the majority of the following locality names of pseudomorphs:

  • Glendonite, after type locality, Glendon, New South Wales, Australia.
  • Thinolite, (Gr. Thinos = shore) Lake Mono, California, USA
  • Jarrowite, Jarrow, Northumberland, UK
  • Fundylite, Bay of Fundy, Nova Scotia, Canada
  • Gersternkorner, (Ger. = Barleycorn)
  • Gennoishi, (Jp. = hammerstones),
  • Molekryds, (Dan. = Mole Cross), Mors Island, Jutland, Denmark
  • White Sea hornlets, White Sea and Kola peninsula.

Ikaite or its freshwater and estuarine environments.   The common ingredient appears to be cold temperatures, although the presence of traces of other chemicals such as nucleation inhibitors for anhydrous calcium carbonate may also be required. It has also been reported as forming in winter on Hokkaido at a saline spring.

Since cold water can be found at depth in the oceans even in the tropics, ikaite can form at all latitudes. However, the presence of ikaite pseudomorphs can be used as a paleoclimate proxy or paleothermometer representing water near freezing conditions.

The thinolite deposits

Thinolite, refers to an unusual form of calcium carbonate found on the shore (Gr. Thinos = shore) of Mono Lake, California. This and other lakes now largely in the desert or semi-desert environments of the SW USA were part of a larger post-glacial lake that covered much of the region near the end of the last glaciation. It is thought that at this time, conditions similar to that of the Ikka fjord allowed for the growth of massive ikaite.

Isotope geochemistry

Isotope geochemistry can reveal information about the origin of the elements that make up minerals. The isotopic composition of ikaite and the pseudomorphs is actively studied. Studies of the ratio of 13C to 12C in ikaite relative to a natural, standard ratio can help to determine the origin of the carbon pool (organic/inorganic) which was consumed to form ikaite. Some studies have shown that oxidizing methane is the source of both modern day ikaite and glendonites in high latitude, marine sediments. Similarly the ratio of 18O to 16O, which varies in nature with temperature and latitude, can be used to show that glendonites were formed in waters very close to the freezing point, in agreement with the observed formation of ikaite.

Further reading

  • Bischoff, J.L, Fitzpatrick, J.A., and Rosenbauer, R.J. (1992) The solubility and stabilization of ikaite (CaCO3.6H2O) from 0° to 25°C: Environmental and paleoclimatic implications for thinolite tufa. Journal of Geology, 101, 21–33.
  • Buchardt, B., Seaman, P., Stockmann, G., Wilken, M.V.U., Duwel, L., Kristiansen, A., Jenner, C., Whiticar, M. J., Kristensen R.M., Petersen, G.H., and Thorbjorn, L. (1997) Submarine columns of ikaite tufa. Nature, 390, 129–130.
  • Buchardt, B., Israelson, C., Seaman, P., and Stockmann, G. 2001. The Ikaite tufa towers in Ikka Fjord, SW Greenland: Formation by mixing of seawater and alkaline spring water. Journal Sedimentary Research vol. 71: 176-189.
  • Dana, E.S. (1884) A crystallographic study of the thinolite of Lake Lahontan: U.S. Geological Survey Bulletin No. 12, 429–450. U.S. Government Printing Office, Washington, D.C.
  • Dickens, B. and Brown, W.E. (1970) The crystal structure of calcium carbonate hexahydrate at ~120°C. Inorganic Chemistry, 9, 480–486.
  • Greinert, J., Derkachev, A. Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Marine Geology 204 (2004) 129-144
  • Ito, T., 1996. Ikaite from cold spring water at Shiowakka , Hokkaido. Genko. 91(6). 209-219
  • Jansen, J. H. F., Woensdregt, C. F., Kooistra, M. J. and van de Gaast, S. J., 1987. Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite. Geology, 15, 245-248
  • Kaplan, M.E., 1979. Calcite pseudomorphs (pseudogaylusite, jarrowite, thinolite, glendonite, gennoishi) in sedimentary rocks. The origin of pseudomorphs (in Russian). Lithol. Miner. Res. 5, 125-141.
  • King, C., 1878. U. S. Geological exploration of the fortieth parallel, Vol. 1. Washington: D.C., U. S. Government Printing Office.
  • Marland, G. (1975) The stability of CaCO3.6H2O (ikaite). Geochimica et Cosmochimica Acta, 39, 83–91.
  • Pauly, H. (1963) “Ikaite”, a new mineral from Greenland. Arctic, 16, 263–264.
  • Pelouze, M.J. (1865) Sur une combinaison nouvelle d’eau et de carbonate de chaux. Chemical Review, 60, 429–431.
  • Schubert, C.J., Nunberg, D., Scheele, N., Pauer, F., and Kriews, M. (1997) 13C isotope depletion in ikaite crystal: evidence for methane release from the Siberian shelves? Geo-Marine Letters, 17, 169–174.
  • Shearman, D.J. and Smith, A.J. (1985) Ikaite, the parent mineral of jarrowite-type pseudomorphs. Proceedings of the Geological Association, London, 96, 305–314.
  • Shearman, D.J., McGugan, A., Stein, C., and Smith, A.J. (1989) Ikaite, CaCO3.6H2O, precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, western United States. Geological Society of America Bulletin, 101, 913–917.
  • Suess, E., Balzer, W., Hesse, K.-F., Muller, P.J., Ungerer, C.A., and Wefer, G. (1982) Calcium carbonate hexahydrate from organic rich sediments of the Antarctic shelf: precursors of glendonites. Science, 216, 1128–1131.
  • Swainson, I.P., Hammond, R.P., 2001. Ikaite, CaCO3.6H2O: Cold comfort for glendonites as palaeothermometers. Am. Mineral. 86, 1530-1533.
  • Whiticar, M.J., Suess, E., 1998. The cold carbonate connection between Mono Lake, California and the Bransfield Strait,Antarctica. Aquat. Geochem. 4, 429-454.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Ikaite". A list of authors is available in Wikipedia.