Exotic atom



An exotic atom is a normal half-life.

Muonic atoms

In a muonic atom, an electron is replaced by a leptons are only sensitive to weak, electromagnetic and gravitational forces, muonic atoms are governed to very high precision by the electromagnetic interaction. There are no complications due to strong forces between the lepton and the nucleus.

Since a muon is more massive than an electron, the energy levels as well as transition rates from excited states to the ground state therefore provide experimental tests of quantum electrodynamics.

Muon-catalyzed fusion is a technical application of muonic atoms.

Hadronic atoms

A hadronic atom is an atom in which one or more of the Σ particle, yielding a Σ or sigmaonic atom.[4][5][6]

Unlike leptons, hadrons can interact via the strong force, so the energy levels of hadronic atoms are influenced by nuclear forces between the kaonic hydrogen, thus provide interesting experimental probes of the theory of strong interactions, quantum chromodynamics.[7]

Onium

Main article: Onium

An onium (plural: onia) is the bound state of a particle and its antiparticle. The classic onium is positron bound together as a long-lived metastable state. Positronium has been studied since the 1950s to understand bound states in quantum field theory. A recent development called non-relativistic quantum electrodynamics (NRQED) used this system as a proving ground.

lattice QCD are increasingly important tests of quantum chromodynamics.

Muonium, despite its name, is not an onium containing a muon and an antimuon, because IUPAC assigned that name to the system of an antimuon bound with an electron.

Understanding bound states of pentaquark states.

Hypernuclear atoms

Atoms may be composed of electrons orbiting a hypernucleus that includes atomic physics.

Quasiparticle atoms

In electron hole.

See also

References

  1. ^ §1.8, Constituents of Matter: Atoms, Molecules, Nuclei and Particles, Ludwig Bergmann, Clemens Schaefer, and Wilhelm Raith, Berlin: Walter de Gruyter, 1997, ISBN 3110139901.
  2. ^ a b Exotic atoms, AccessScience, McGraw-Hill. Accessed on line September 26, 2007.
  3. ^ p. 3, Fundamentals in Hadronic Atom Theory, A. Deloff, River Edge, New Jersey: World Scientific, 2003. ISBN 9812383719.
  4. ^ p. 8, §16.4, §16.5, Deloff.
  5. ^ a b The strange world of the exotic atom, Roger Barrett, Daphne Jackson and Habatwa Mweene, New Scientist, August 4, 1990. Accessed on line September 26, 2007.
  6. ^ p. 180, Quantum Mechanics, B. K. Agarwal and Hari Prakash, New Delhi: Prentice-Hall of India Private Ltd., 1997. ISBN 81-203-1007-1.
  7. ^ Exotic atoms cast light on fundamental questions, CERN Courier, November 1, 2006. Accessed on line September 26, 2007.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Exotic_atom". A list of authors is available in Wikipedia.