Onsager reciprocal relations



In local equilibrium exists.

As an example, it is observed that statistical mechanics.

Similar "reciprocal relations" occur between different pairs of forces and flows in a variety of physical systems.

The theory developed by Onsager is much more general than this example and capable of treating more than two thermodynamic forces at once.

Example: Fluid system

Thermodynamic potentials, forces and flows

The basic fluid system, the energy density \ u depends on matter density \ r and entropy density \ s in the following way:

\ du= T ds + m dr

where \ T is temperature and \ m is a combination of pressure and chemical potential. We can write

ds = \frac{1}{T} du - \frac{m}{T} dr.

The extensive quantities \ u and \ r are conserved and their flows satisfy continuity equations:

\partial_{t}u + \nabla \cdot \mathbf{J}_{u} = 0 \!

and

\partial_{t}r + \nabla \cdot \mathbf{J}_{r} = 0 \!,

where \partial_{t} indicates the partial derivative with respect to time \ t, and \ \nabla \cdot \! indicates the divergence of the flux densities \ \mathbf{J} \!.

The gradients of the conjugate variables (thermodynamics) of \ u and \ r, which are \frac{1}{T} and -\frac{m}{T}, are thermodynamic forces and they cause flows of the corresponding extensive variables. In the absence of matter flows,

\mathbf{J}_{u} = k\, \nabla\frac{1}{T} \!;

and, in the absence of heat flows,

\mathbf{J}_{r} = -k'\, \nabla\frac{m}{T} \!,

where \ \nabla now indicates the gradient.

The reciprocity relations

In this example, when there are both heat and matter flows, there are "cross-terms" in the relationship between flows and forces (the proportionality coefficients are customarily denoted by \ L):

\mathbf{J}_{u} = L_{uu}\, \nabla\frac{1}{T} - L_{ur}\, \nabla\frac{m}{T} \!

and

\mathbf{J}_{r} = L_{ru}\, \nabla\frac{1}{T} - L_{rr}\, \nabla\frac{m}{T} \!.

The Onsager reciprocity relations state the equality of the cross-coefficients \ L_{ur} and \ L_{ru}. Proportionality follows from simple dimensional analysis (i.e., both coefficients are measured in the same units of temperature times mass density).

Abstract formulation

Let \ E_{i} be the extensive variables on which entropy \ S depends. In the following analysis, these symbols will refer to densities of these thermodynamic quantities. Then,

\ dS=\sum_{i}I_{i}dE_{i}

where

I_{i} :=\frac{\partial{S}}{\partial{E_{i}}} \!

defines the intensive quantity \ I_{i} conjugate to the extensive quantity \ E_{i}.

The gradients of the intensive quantities are thermodynamic forces:

\mathbf{F}_{i} = -\nabla{I_{i}} \!

and they cause fluxes \ J_{i} of the extensive quantities satisfying continuity equations

\partial_{t}E_{i} + \nabla \cdot \mathbf{J}_{i} = 0 \!

The fluxes are proportional to the thermodynamic forces by a matrix of coefficients \ L_{ij}

\mathbf{J}_{i}=\sum_{j}L_{ij}\mathbf{F}_{j} \!

Then,

\partial_{t}E_{i} = \nabla \cdot \sum_{j} L_{ij}\, \nabla{I_{j}} \!

Introducing a susceptibility matrix

\sigma_{ij} = \frac{\partial{E_{i}}}{\partial{I_{j}}} \!

we have

\sum_{j} \sigma_{ij}\, \partial_{t}I_{j} = \nabla \cdot \sum_{j} L_{ij}\, \nabla{I_{j}} \!
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Onsager_reciprocal_relations". A list of authors is available in Wikipedia.