Organosulfur compounds



Organosulfur compounds are oil refineries.

Sulfur shares the chalcogen group with oxygen, and it is expected that organosulfur compounds have similarities with carbon-oxygen compounds, which is true to some extent.

A classical chemical test for the detection of sulfur compounds is the Carius halogen method.

Classes of organosulfur compounds

Organosulfur compounds can be classified according to the sulfur-containing functional groups, which are listing in decreasing order of their occurrence.

Thioethers, thioesters, thioacetals

Thioethers are characterized by C-S-C bond dissociation energy for thiomethane is 89 kcal/mol (370 kJ/mol) compared to methane's 100 kcal/mol (420 kJ/mol) and when hydrogen is replaced by a methyl group the energy decreases to 73 kcal/mol (305 kJ/mol).[1]

The single dimethyl ether are respectively 73 and 77 kcal/mol (305 and 322 kJ/mol.

Thioethers are typically prepared by alkylation of thiols. They can also be prepared via the aluminium chloride [2]

thioesters with general structure R-CO-S-R.

Thiophenes represent a special class of thioethers that are activating group than the alkoxy group.

Thiols, disulfides

pKa units [3].

The difference in nanotechnology.

Certain aromatic thiols can be accessed through a Herz reaction.

biochemistry for the folding and stability of some proteins and in polymer chemistry for the crosslinking of rubber.

Double bonds between C and S

thiophosgene. Resonance-stabilized C=S bonds are more common, as found in thioamides (see below) and related species.

Thioketones have the general structure RC(=S)R'. These species are quite rare, in contrast to their oxygen analogues. Thioaldehydes are rarer still, reflecting their lack of steric protection.

Lawesson's reagent.

Double bonds of carbon and sulfur exist as Sulfonium ylides for instance in the Johnson-Corey-Chaykovsky reaction.

Sulfonic acids, esters, amides

aromatic sulfonation.

Sulfuranes and persulfuranes

Sulfuranes are relatively specialized functional group that are tetravalent, diethyl zinc. The sulfur analogue hexamethylpersulfurane SMe6 has been predicted to be stable [6] but has not been synthesized yet.

The first ever all-carbon persulfurane actually synthesized in a laboratory has two methyl and two ligands [7]:

It is prepared from the corresponding sulfurane 1 with octahedral molecular geometry.

In silico experiments suggest that these bonds are very polar with the negative charges residing on carbon.

Naturally occurring organosulfur compounds

Not all organosulfur compounds are foul-smelling pollutants. Compounds like platelet aggregation or fighting cancer.

Organosulfur compounds in pollution

Most organic sulfur compounds in the environment are naturally occurring, as a consequence of the fact that sulfur is essential for life and two amino acids contain this element.

Some organosulfur compounds in the environment, are generated as minor by-products of industrial processes such as the manufacture of plastics and tires.

Selected smell-producing processes are organosulfur compounds produced by the coking of coal designed to drive out sulfurus compounds and other volatile impurities in order to produce 'clean carbon' (coke), which is primarily used for steel production.

Organosulfur compounds in fossil fuels

Odours occur as well in diesel, and other grades of fuel oils production.

Organosulfur compounds might be understood as smelly contaminants that need to be removed from natural gas before commercial uses, from exhaust stacks and exhaust vents before discharge. In this latter context, organosulfur compounds may be said to account for the pollutants in sulfurous acid rain, or equivalently, said to be pollutants within most common fossil fuels, especially coal.

See also

CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl Ar
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr Kr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI Xe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Ac Th Pa CU Np Pu Am Cm Bk Cf Es Fm Md No Lr


carbon
Core organic chemistry many uses in chemistry.
Academic research, but no widespread use Bond unknown / not assessed.

References

  1. ^ Handbook of Chemistry and Physics, 81st Edition CRC Press ISBN 0-8493-0481-4
  2. ^ Organic Syntheses, Coll. Vol. 2, p.485 (1943); Vol. 18, p.64 (1938). Article link
  3. ^ Organosulfur chemistry. reviews of current research JANSSEN, M.J. Interscience, New York,(1967)
  4. ^ For an example bis[2,2,2-trifluoro-1-phenyl-1-(trifluoromethyl) ethoxy] diphenyl sulfurane Organic Syntheses, Coll. Vol. 6, p.163 (1988); Vol. 57, p.22 (1977) Link.
  5. ^ Synthesis and characterization of hexamethyltellurium(VI) Latif Ahmed, John A. Morrison J. Am. Chem. Soc.; 1990; 112(20); 7411-7413. Abstract
  6. ^ The S6 Point Group Conformers of the Hexamethylchalcogens: Me6S, Me6Se, Me6Te Fowler, J. E.; Schaefer, H. F., III; Raymond, K. N. Inorg. Chem.; (Article); 1996; 35(2); 279-281. doi:10.1021/ic940240d 10.1021/ic940240d
  7. ^ Isolation and Molecular Structure of the Organo-persulfuranes [12-S-6(C6)] Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. J. Am. Chem. Soc.; (Communication); 2006; 128(21); 6778-6779. doi:10.1021/ja060497y
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Organosulfur_compounds". A list of authors is available in Wikipedia.