Chemokine



 

Chemokines are a family of small cytokines, or chemokine receptors, that are selectively found on the surfaces of their target cells.

Function

  The major role of chemokines is to guide the migration of cells. Cells that are attracted by chemokines follow a signal of increasing chemokine concentration towards the source of the chemokine. Some chemokines control cells of the immune system during processes of immune surveillance, such as directing lymphocytes to the lymph nodes so they can screen for invasion of pathogens by interacting with antigen-presenting cells residing in these tissues. These are known as homeostatic chemokines and are produced and secreted without any need to stimulate their source cell(s). Some chemokines have roles in development; they promote angiogenesis (the growth of new blood vessels), or guide cells to tissues that provide specific signals critical for cellular maturation. Other chemokines are inflammatory and are released from a wide variety of cells in response to bacterial infection, viruses and agents that cause physical damage such as interleukin 1. Inflammatory chemokines function mainly as chemoattractants for leukocytes, recruiting monocytes, neutrophils and other effector cells from the blood to sites of infection or tissue damage. Certain inflammatory chemokines activate cells to initiate an immune response or promote wound healing. They are released by many different cell types and serve to guide cells of both innate immune system and adaptive immune system.

Structural characteristics

  Proteins are classified into the chemokine family based on their structural characteristics, not just their ability to attract cells. All chemokines are small, with a α-helix. These helices and strands are connected by turns called 30s, 40s and 50s loops; the third and fourth cysteines are located in the 30s and 50s loops.[1]

Types

CC chemokines
Name Gene Other name(s) Uniprot
CCL1 Scya1 I-309, TCA-3 P22362
CCL2 Scya2 MCP-1 P13500
CCL3 Scya3 MIP-1α P10147
CCL4 Scya4 MIP-1β P13236
CCL5 Scya5 RANTES P13501
CCL6 Scya6 C10, MRP-2 P27784
CCL7 Scya7 MARC, MCP-3 P80098
CCL8 Scya8 MCP-2 P80075
CCL9/CCL10 Scya9 MRP-2, CCF18, MIP-1γ P51670
CCL11 Scya11 Eotaxin P51671
CCL12 Scya12 MCP-5 Q62401
CCL13 Scya13 MCP-4, NCC-1, Ckβ10 Q99616
CCL14 Scya14 HCC-1, MCIF, Ckβ1, NCC-2, CCL Q16627
CCL15 Scya15 Leukotactin-1, MIP-5, HCC-2, NCC-3 Q16663
CCL16 Scya16 LEC, NCC-4, LMC, Ckβ12 O15467
CCL17 Scya17 TARC, dendrokine, ABCD-2 Q92583
CCL18 Scya18 PARC, DC-CK1, AMAC-1, Ckβ7, MIP-4 P55774
CCL19 Scya19 ELC, Exodus-3, Ckβ11 Q99731
CCL20 Scya20 LARC, Exodus-1, Ckβ4 P78556
CCL21 Scya21 SLC, 6Ckine, Exodus-2, Ckβ9, TCA-4 O00585
CCL22 Scya22 MDC, DC/β-CK O00626
CCL23 Scya23 MPIF-1, Ckβ8, MIP-3, MPIF-1 P55773
CCL24 Scya24 Eotaxin-2, MPIF-2, Ckβ6 O00175
CCL25 Scya25 TECK, Ckβ15 O15444
CCL26 Scya26 Eotaxin-3, MIP-4α, IMAC, TSC-1 Q9Y258
CCL27 Scya27 CTACK, ILC, Eskine, PESKY, skinkine Q9Y4X3
CCL28 Scya28 MEC Q9NRJ3
CXC chemokines
Name Gene Other name(s) Uniprot
CXCL1 Scyb1 Gro-α, GRO1, NAP-3 P09341
CXCL2 Scyb2 Gro-β, GRO2, MIP-2α P19875
CXCL3 Scyb3 Gro-γ, GRO3, MIP-2β P19876
CXCL4 Scyb4 PF-4 P02776
CXCL5 Scyb5 ENA-78 P42830
CXCL6 Scyb6 GCP-2 P80162
CXCL7 Scyb7 NAP-2, CTAPIII, β-Ta, PEP P02775
CXCL8 Scyb8 IL-8, NAP-1, MDNCF, GCP-1 P10145
CXCL9 Scyb9 MIG, CRG-10 Q07325
CXCL10 Scyb10 IP-10, CRG-2 P02778
CXCL11 Scyb11 I-TAC, β-R1, IP-9 O14625
CXCL12 Scyb12 SDF-1, PBSF P48061
CXCL13 Scyb13 BCA-1, BLC O43927
CXCL14 Scyb14 BRAK, bolekine O95715
CXCL15 Scyb15 Lungkine, WECHE Q9WVL7
CXCL16 Scyb16 SRPSOX Q9H2A7
CXCL17 VCC-1 DMC, VCC-1 Q6UXB2
C chemokines
Name Gene Other name(s) Uniprot
XCL1 Scyc1 Lymphotactin α, SCM-1α, ATAC P47992
XCL2 Scyc2 Lymphotactin β, SCM-1β Q9UBD3
CX3C chemokines
Name Gene Other name(s) Uniprot
CX3CL1 Scyd1 Fractalkine, Neurotactin, ABCD-3 P78423

Members of the chemokine family are categorized into four groups depending on the spacing of their first two cysteine residues.

CC chemokines

The CC chemokines (or β-chemokines) have two adjacent cysteines near their amino terminus. There have been at least 27 distinct members of this subgroup reported for mammals, called CC chemokine ligands (CCL)-1 to -28; CCL10 is the same as CCL9. Chemokines of this subfamily usually contain four cysteines (C4-CC chemokines), but a small number of CC chemokines possess six cysteines (C6-CC chemokines). C6-CC chemokines include CCL1, CCL15, CCL21, CCL23 and CCL28.[2] CC chemokines induce the migration of monocytes and other cell types such as NK cells and dendritic cells. An example of a CC chemokine is monocyte chemoattractant protein-1 (MCP-1 or CCL2) which induces monocytes to leave the bloodstream and enter the surrounding tissue to become tissue macrophages. CC chemokines induce cellular migration by binding to and activating CCR5.

CXC chemokines

The two N-terminal cysteines of CXC chemokines (or α-chemokines) are separated by one amino acid, represented in this name with an "X". There have been 17 different CXC chemokines described in mammals, that are subdivided into two categories, those with a specific amino acid sequence (or motif) of CXC chemokine receptors, of which seven have been discovered to date, designated CXCR1-7.

C chemokines

The third group of chemokines is known as the C chemokines (or γ chemokines), and is unlike all other chemokines in that it has only two cysteines; one N-terminal cysteine and one cysteine downstream. Two chemokines have been described for this subgroup and are called XCL1 (lymphotactin-α) and XCL2 (lymphotactin-β). These chemokines attract T cell precursors to the thymus.

CX3C chemokines

A fourth group has also been discovered and members have three amino acids between the two cysteines and is termed CX3C chemokine (or δ-chemokines). The only CX3C chemokine discovered to date is called fractalkine (or CX3CL1). It is both secreted and tethered to the surface of the cell that expresses it, thereby serving as both a chemoattractant and as an adhesion molecule.

Receptors

For more details on this topic, see Chemokine receptor.

Structure and Features

cysteine residue that allow formation of a disulphide bridge between these loops. G proteins are coupled to the C-terminal end of the chemokine receptor to allow intracellular signaling after receptor activation, while the N-terminal domain of the chemokine receptor determines ligand binding specificity.[3]

Signal Transduction

Chemokine receptors associate with G-proteins to transmit integrins within the cell harbouring the chemokine receptor.[4]

Infection control

The discovery that the β chemokines RANTES, MIP (Macrophage Inflammatory Proteins) 1α and 1β (now known as CCL5, CCL3 and CCL4 respectively) suppress HIV-1 provided the initial connection and indicated that these molecules might control infection as part of immune responses in vivo.[5] The association of chemokine production with antigen-induced proliferative responses, more favorable clinical status in HIV infection, as well as with an uninfected status in subjects at risk for infection suggests a positive role for these molecules in controlling the natural course of HIV infection.[6]

See also

  • Paracrine signalling

References

  1. ^ Fernandez E, Lolis E. "Structure, function, and inhibition of chemokines". Annu Rev Pharmacol Toxicol 42: 469-99. PMID 11807180.
  2. ^ Laing K, Secombes C (2004). "Chemokines". Dev Comp Immunol 28 (5): 443-60. PMID 15062643.
  3. ^ Craig Murdoch and Adam Finn (2000). "Chemokine receptors and the role in inflammation and infectious disease". Journal of the American Society of Hematology 95 (10): 3032-3043.
  4. ^ Craig Murdoch and Adam Finn (2000). "Chemokine receptors and the role in inflammation and infectious disease". Journal of the American Society of Hematology 95 (10): 3032-3043.
  5. ^ Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, and Lusso P (October 1995). "Identification of RANTES, MIP-1a, and MIP-1b as the major HIV-suppressive factor produced by CD8+ T cells". Science 270: 1811-1815.
  6. ^ Alfredo Garzino-Demo, Ronald B. Moss, Joseph B. Margolick, Farley Cleghorn, Anne Sill, William A. Blattner, Fiorenza Cocchi, Dennis J. Carlo, Anthony L. DeVico, and Robert C. Gallo (October 1999). "Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status". Proc Natl Acad Sci U S A 96 (21): 11986–11991.


 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Chemokine". A list of authors is available in Wikipedia.