Newtonian fluid



Continuum mechanics
Conservation of mass
Conservation of momentum
Navier-Stokes equations
This box: view  talk  edit

A Newtonian fluid (named for viscosity.

A simple equation to describe Newtonian fluid behaviour is

\tau=\mu\frac{du}{dx}

where

τ is the shear stress exerted by the fluid ("drag") [Pa]
μ is the fluid viscosity - a constant of proportionality [Pa·s]
\frac{du}{dx} is the velocity gradient perpendicular to the direction of shear [s−1]

In common terms, this means the fluid continues to flow, regardless of the forces acting on it. For example, water is Newtonian, because it continues to exemplify fluid properties no matter how fast it is stirred or mixed. Contrast this with a paints, which brush on easily but become more viscous when on walls).

For a Newtonian fluid, the viscosity, by definition, depends only on pressure (and also the chemical composition of the fluid if the fluid is not a pure substance), not on the forces acting upon it.

If the fluid is incompressible and viscosity is constant across the fluid, the equation governing the shear stress, in the Cartesian coordinate system, is

\tau_{ij}=\mu\left(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i} \right)

with comoving stress tensor \mathbb{P} (also written as \mathbf{\sigma})

\mathbb{P}_{ij}= - p \delta_{ij} + \mu\left(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i} \right)

where, by the convention of tensor notation,

τij is the shear stress on the ith face of a fluid element in the jth direction
ui is the velocity in the ith direction
xj is the jth direction coordinate

If a fluid does not obey this relation, it is termed a non-Newtonian fluid, of which there are several types.

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Newtonian_fluid". A list of authors is available in Wikipedia.