Tin(II) chloride



Tin(II) chloride
General
Systematic name Tin(II) chloride
Other names Stannous chloride
Tin salt
Tin dichloride
Tin protochloride
Molecular formula SnCl2
Molar mass 189.60 g/mol (anhydrous)
225.63 (dihydrate)
Appearance White crystalline solid
CAS number [7772-99-8] (anhydrous)
[10025-69-1] (dihydrate)
Properties
Density and phase 3.95 g/cm³, anhydrous solid
2.71 g/cm³, dihydrate (15 °C)
water 83.9 g/100 ml (0 °C)
Hydrolyses in hot water
In ethyl acetate soluble
Melting point 246 °C (519 K)
Boiling point 623 °C (896 K)
Structure
Molecular shape Bent (gas phase)
Coordination geometry Trigonal pyramidal (anhydrous)
Dihydrate also three-coordinate
Crystal structure Layer structure
(chains of SnCl3 groups)
Hazards
MSDS External MSDS
Main hazards Corrosive
NFPA 704
R/S statement R: 22-34-37
S: 26-36/37/39-45
RTECS number XP8700000 (anhydrous)
XP8850000 (dihydrate)
Supplementary data page
Structure & properties εr, etc.
Thermodynamic data Phase behaviour
Solid, liquid, gas
Spectral data MS
Related compounds
Other anions Tin(II) fluoride
Tin(II) bromide
Other cations Lead(II) chloride
Except where noted otherwise, data are given for
materials in their standard state (at 25°C, 100 kPa)
Infobox disclaimer and references

Tin(II) chloride (stannous chloride) is a white tin(IV) chloride or stannic chloride (SnCl4).

Chemical structure

SnCl2 has a crystal lattice, with the "second" water sandwiched between the layers.


Chemical properties

Tin(II) chloride can dissolve in less than its own mass of water without apparent decomposition, but as the solution is diluted hydrolysis occurs to form an insoluble basic salt:

SnCl2(aq) + H2O(l) ↔ Sn(OH)Cl(s) + HCl(aq)

Therefore if clear solutions of tin(II) chloride are to be used, oxidation by the air:

6 SnCl2(aq) + s)

This can be prevented by storing the solution over lumps of tin metal.[1]

There are many such cases where tin(II) chloride acts as a reducing agent, reducing gold salts to the metal, and iron(III) salts to iron(II), for example:

SnCl2(aq) + 2 FeCl2(aq)

Solutions of tin(II) chloride can also serve simply as a source of Sn2+ ions, which can form other tin(II) compounds via precipitation reactions, for example brown (or black) tin(II) sulfide:

SnCl2(aq) + Na2S(aq) → SnS(s) + 2 NaCl(aq)

If alkali is added to a solution of SnCl2, a white precipitate of hydrated tin(II) oxide forms initially; this then dissolves in excess base to form a stannite salt such as sodium stannite:

SnCl2(aq) + 2 NaCl(aq)
SnO·H2O(s) + NaOH(aq) → NaSn(OH)3(aq)

Anhydrous SnCl2 can be used to make a variety of interesting tin(II) compounds in non-aqueous solvents. For example, the THF to give the yellow linear two-coordinate compound Sn(OAr)2 (Ar = aryl).[2]

Tin(II) chloride also behaves as a chloride ion, for example:

SnCl2(aq) + CsCl(aq) → CsSnCl3(aq)

Most of these complexes are pyramidal, and since complexes such as SnCl3 have a full ferrocene-related product of the following reaction :

SnCl2 + Fe(η5-C5H5)(CO)2HgCl → Fe(η5-C5H5)(CO)2SnCl3 + Hg

SnCl2 can be used to make a variety of such compounds containing metal-metal bonds, for example:

SnCl2 + Co2(CO)8 → (CO)4Co-(SnCl2)-Co(CO)4

Preparation

Anhydrous SnCl2 is prepared by the action of dry hydrochloric acid:

g)

The water is then carefully evaporated from the acidic solution to produce crystals of SnCl2·2H2O. This dihydrate can be acetic anhydride.

Uses

A solution of tin(II) chloride containing a little electrolysis.

It is used as a catalyst in the production of the plastic polylactic acid (PLA).

Tin(II) chloride also finds wide use as a silver metal is deposited on the glass:

Sn2+(aq) + 2 Ag+ → Sn4+(aq) + 2 Ag(s)

A related reduction was traditionally used as an analytical test for purple in the presence of gold.

This very reaction between stannous chloride and gold was used in episode #215:Clueless of House to affirm gold poisoning.[citation needed]

In aldehyde.[3]

The reaction usually works best with PCl5 to form the imidoyl chloride salt.

The Stephen reduction is less used today, because it has been mostly superseded by diisobutylaluminium hydride reduction.

Additionally, SnCl2 is used to selectively reduce anilines.[4]

SnCl2 also reduces hydroquinones.

Stannous chloride is also added as a food additive with antioxidant.

In Popular Culture

This compound was featured in the House, M.D. episode “Clueless,” wherein it was used to detect the presence of gold sodium thiomalate used by the patient’s wife to poison him.[citation needed]

References

  • N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, UK, 1997.
  • Handbook of Chemistry and Physics, 71st edition, CRC Press, Ann Arbor, Michigan, 1990.
  • The Merck Index, 7th edition, Merck & Co, Rahway, New Jersey, USA, 1960.
  • A. F. Wells, 'Structural Inorganic Chemistry, 5th ed., Oxford University Press, Oxford, UK, 1984.
  • J. March, Advanced Organic Chemistry, 4th ed., p. 723, Wiley, New York, 1992.
  1. ^ H. Nechamkin (1968). The Chemistry of the Elements. New York: McGraw-Hill. 
  2. ^ B. Cetinkaya, I. Gumrukcu, M. F. Lappert, J. L. Atwood, R. D. Rogers and M. J. Zaworotko (1980). "Bivalent germanium, tin, and lead 2,6-di-tert-butylphenoxides and the crystal and molecular structures of M(OC6H2Me-4-But2-2,6)2 (M = Ge or Sn)". J. Am. Chem. Soc. 102 (6): 2088-2089. doi:10.1021/ja00526a054.
  3. ^ Williams, J. W. (1955). "β-Naphthaldehyde". Org. Synth.; Coll. Vol. 3: 626. 
  4. ^ F. D. Bellamy and K. Ou (1984). "Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium". Tetrahedron Letters 25 (8): 839-842. doi:10.1016/S0040-4039(01)80041-1.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Tin(II)_chloride". A list of authors is available in Wikipedia.