Chloroform



Chloroform
IUPAC name Trichloromethane
Other names Chloroform, Formyl trichloride, Methane trichloride, Methyl trichloride, Methenyl trichloride, TCM, Freon 20, R-20, UN 1888
Identifiers
CAS number 67-66-3
PubChem 6212
EINECS number 200-663-8
KEGG C13827
ChEBI 35255
RTECS number FS9100000
SMILES C(Cl)(Cl)Cl
InChI InChI=1/CHCl3/c2-1(3)4/h1H
Properties
Molecular formula CHCl3
Molar mass 119.38 g/mol
Appearance Colorless liquid
Density 1.48 g/cm³, liquid
Melting point

-63.5 °C

Boiling point

61.2 °C

Solubility in water 0.8 g/100 ml at 20 °C
Structure
Molecular shape Tetrahedral
Hazards
MSDS External MSDS
Main hazards Harmful (Xn), Irritant (Xi),

Carc. Cat. 2B

NFPA 704
0
2
0
 
R-phrases R22, R38, R40, R48/20/22
S-phrases S36/37
Flash point Non-flammable
U.S. Permissible
exposure limit (PEL)
50 ppm (240 mg/m3) (OSHA)
Supplementary data page
Structure and
properties
εr, etc.
Thermodynamic
data
Phase behaviour
Solid, liquid, gas
Spectral data MS
Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)

Infobox disclaimer and references

Chloroform, also known as trichloromethane and methyl trichloride, is a solvent. It is also considered an environmental hazard.

History

Chloroform was discovered in July, 1831 by the American physician Samuel Guthrie,[1] and independently a few months later by the French Jean-Baptiste Dumas.[4]

In 1847, the Edinburgh obstetrician James Young Simpson first used chloroform for general anesthesia during childbirth. The use of chloroform during surgery expanded rapidly thereafter in Europe. In the United States, chloroform began to replace carcinogenic.

Production

Industrially, chloroform is produced by heating a mixture of chloromethane to progressively more chlorinated compounds.

CH4 + Cl2 → CH3Cl + HCl
CH3Cl + Cl2CH2Cl2 + HCl
CH2Cl2 + Cl2 → CHCl3 + HCl

Chloroform undergoes further chlorination to give CCl4:

CHCl3 + Cl2 → CCl4 + HCl

The output of this process is a mixture of the four chloromethanes: chloromethane, dichloromethane, chloroform (trichloromethane), and carbon tetrachloride, which are then separated by distillation.[citation needed]

Chloroform was first produced industrially by the reaction of chloral hydrate,[citation needed] or from ordinary chloroform.[5]

Inadvertent synthesis of chloroform

The haloform reaction can also occur inadvertently in domestic settings. Sodium hypochlorite solution (chlorine bleach) mixed with common household liquids such as isopropyl alcohol will all produce chloroform.

Uses

The major use of chloroform today is in the production of the R-22. However, as the Montreal Protocol takes effect, this use can be expected to decline as R-22 is replaced by refrigerants that are less liable to result in ozone depletion. In addition, it is used under research conditions to anesthetize mosquitoes for experiments, most frequently for the study of malaria. It is sometimes seen used in movies (e.g. Ace Ventura) and TV shows (e.g. Arrested Development) as an agent to knock out an unsuspecting victim.

Anesthetic

Chloroform was developed in the mid-1800s and was mainly used as an anesthetic. Inhaling chloroform vapors depressed the central nervous system of a patient, causing dizziness, fatigue and unconsciousness, allowing a doctor or barber to perform simple surgery or other painful operations.

As a solvent

Chloroform is a common solvent because it is relatively unreactive, miscible with most organic liquids, and conveniently volatile. Small amounts of chloroform are used as a acrylic glass (which is also known under the trade name 'Perspex').

As a reagent in organic synthesis

As a reagent, chloroform serves as a source of the dichlorocarbene CCl2 group.[6] It reacts with aqueous cyclopropane derivative.

Safety

As might be expected from its use as an phosgene) and to the kidneys, and some people develop sores when the skin is immersed in chloroform.

Animal studies have shown that miscarriages occur in rats and mice that have breathed air containing 30 to 300 ppm chloroform during pregnancy and also in rats that have ingested chloroform during pregnancy. Offspring of rats and mice that breathed chloroform during pregnancy have a higher incidence of birth defects, and abnormal sperm have been found in male mice that have breathed air containing 400 ppm chloroform for a few days. The effect of chloroform on reproduction in humans is unknown.

Chloroform once appeared in toothpastes, cough syrups, ointments, and other pharmaceuticals, but it has been banned in consumer products in the United States since 1976.[9]

The National Toxicology Program's eleventh report on carcinogens[10] implicates it as reasonably anticipated to be a human dichloromethane, have resulted in a substantial reduction of its use as a solvent.

During prolonged storage hazardous amounts of ethanol or amylene, but samples that have been recovered or dried no longer contain any stabilizer and caution must be taken. Suspicious bottles should be tested for phosgene. Filter-paper strips, wetted with 5% diphenylamine, 5% dimethylaminobenzaldehyde, and then dried, turn yellow in phosgene vapor.

Commonly used in DNA extractions and generally in conjunction with phenol to form a biolayer with extraction buffer (tris etc). DNA will form in the supernatant while protein and non soluble cell materials will precipitate between the buffer chloroform layers.

See also

References

  1. ^ Samuel Guthrie (1832). ".". Am. J. Sci. and Arts 21: 64.
  2. ^ Eugène Soubeiran (1831). ".". Ann. Chim. 48: 131.
  3. ^ Justus Liebig (1832). "Ueber die Verbindungen, welche durch die Einwirkung des Chlors auf Alkohol, Aether, ölbildendes Gas und Essiggeist entstehen". Annalen der Pharmacie 1 (2): 182-230. doi:10.1002/jlac.18320010203.
  4. ^ Jean-Baptiste Dumas (1834). "Untersuchung über die Wirkung des Chlors auf den Alkohol". Annalen der Pharmacie 107 (41): 650-656. doi:10.1002/andp.18341074103.
  5. ^ Canadian Patent 1085423
  6. ^ Srebnik, M.; Laloë, E. "Chloroform" Encyclopedia of Reagents for Organic Synthesis" 2001 John Wiley. doi:10.1002/047084289X.rc105
  7. ^ (1988) "1,6-Methano[10]annulene". Org. Synth.; Coll. Vol. 6: 731. 
  8. ^ Gokel, G. W.; Widera, R. P.; Weber, W. P. (1988). "Phase-Transfer Hofmann Carbylamine Reaction: tert-Butyl Isocyanide". Org. Synth.; Coll. Vol. 6: 232. 
  9. ^ The National Toxicology Program: Substance Profiles: Chloroform CAS No. 67-66-3 (pdf). Retrieved on 2007-11-02.
  10. ^ 11th Report on Carcinogens. Retrieved on 2007-11-02.
  11. ^ Centers for Disease Control and Prevention: CURRENT INTELLIGENCE BULLETIN 9.
  12. ^ National Toxicology Program: Report on the carcinogenesis bioassay of chloroform.
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Chloroform". A list of authors is available in Wikipedia.