Europium



63 gadolinium
-

Eu

Am
General
Number europium, Eu, 63
lanthanides
Block f
Appearance silvery white
(1)  g·mol−1
Xe] 4f7 6s2
shell 2, 8, 18, 25, 8, 2
Physical properties
Phase solid
r.t.) 5.264  g·cm−3
Liquid m.p. 5.13  g·cm−3
F)
F)
kJ·mol−1
kJ·mol−1
Heat capacity (25 °C) 27.66  J·mol−1·K−1
Vapor pressure
P(Pa) 1 10 100 1 k 10 k 100 k
at T(K) 863 957 1072 1234 1452 1796
Atomic properties
Crystal structure simple cubic (body centered)
basic oxide)
Electronegativity  ? 1.2 (Pauling scale)
more) 1st:  547.1  kJ·mol−1
2nd:  1085  kJ·mol−1
3rd:  2404  kJ·mol−1
Atomic radius 185  pm
Atomic radius (calc.) 231  pm
Miscellaneous
Magnetic ordering no data
r.t.) (poly) 0.900 µΩ·m
Thermal conductivity (300 K) est. 13.9  W·m−1·K−1
r.t.) (poly)
35.0 µm/(m·K)
Young's modulus 18.2  GPa
Shear modulus 7.9  GPa
Bulk modulus 8.3  GPa
Poisson ratio 0.152
Vickers hardness 167  MPa
CAS registry number 7440-53-1
Selected isotopes
Main article: Isotopes of europium
iso NA half-life DM DE (MeV) DP
150Eu syn 36.9 y ε 2.261 150Sm
151Eu 47.8% Eu is neutrons
152Eu syn 13.516 y ε 1.874 152Sm
β- 1.819 152Gd
153Eu 52.2% Eu is neutrons
References

Europium (atomic number 63. It was named after the continent Europe.

Notable characteristics

Europium is the most reactive of the ductile.

Applications

There are few commercial applications for europium metal, although it has been used to yttrium-based phosphors. Whereas trivalent europium gives red phosphors, divalent europium gives blue phosphors. The two europium phosphor classes, combined with the yellow/green terbium phosphors, give the "trichromatic" lights that are becoming so important to provide economical lighting. It is also being used as an agent for the manufacture of fluorescent glass. Europium fluorescence is used to interrogate biomolecular interactions in drug-discovery screens. It is also used in the anti-counterfeiting phosphors in Euro banknotes. [1]

Europium is commonly included in trace element studies in europium anomaly found is used to help reconstruct the relationships within a suite of igneous rocks.

History

Europium was first found by samarium were contaminated with an unknown element in 1896 and who was able to isolate europium in 1901. When the europium-doped yttrium orthovanadate red phosphor was discovered in the early 1960s, and understood to be about to cause a revolution in the color television industry, there was a mad scramble for the limited supply of europium on hand among the monazite processors. (Typical europium content in monazite was about 0.05%.) Luckily, Molycorp, with its bastnäsite deposit at Mountain Pass California, whose lanthanides had an unusually "rich" europium content of 0.1%, was about to come on-line and provide sufficient europium to sustain the industry. Prior to europium, the color-TV red phosphor was very weak, and the other phosphor colors had to be muted, to maintain color balance. With the brilliant red europium phosphor, it was no longer necessary to mute the other colors, and a much brighter color TV picture was the result. Europium has continued in use in the TV industry ever since, and, of course, also in computer monitors. California bastnäsite now faces stiff competition from Bayan Obo, China, with an even "richer" europium content of 0.2%. Frank Spedding, celebrated for his development of the ion-exchannge technology that revolutionized the rare earth industry in the mid-1950's once related the story of how, in the 1930's, he was lecturing on the rare earths when an elderly gentleman approached him with an offer of a gift of several pounds of europium oxide. This was an unheard-of quantity at the time, and Spedding did not take the man seriously. However, a package duly arrived in the mail, containing several pounds of genuine europium oxide. The elderly gentleman had turned out to be the Dr. McCoy who had developed a famous method of europium purification involving redox chemistry.

Occurrence

Europium is never found in nature as a free element; however, there are many minerals containing europium, with the most important sources being europium anomaly.

Divalent europium in small amounts happens to be the activator of the bright blue fluorescence of some samples of the mineral fluorite (calcium difluoride). The most outstanding examples of this originated around Weardale, and adjacent parts of northern England, and indeed it was this fluorite that gave its name to the phenomenon of fluorescence, although it was not until much later that europium was discovered or determined to be the cause.

Compounds

Europium compounds include:

Europium(II) compounds tend to predominate, in contrast to most ionic radii. Divalent europium is a mild reducing agent, such that under atmospheric conditions, it is the trivalent form that predominates. Under anaerobic, and particularly under geothermal conditions, the divalent form is sufficiently stable such that it tends to be incorporated into minerals of calcium and the other alkaline earths. This is the cause of the "negative europium anomaly", that depletes europium from being incorporated into the most usual light lanthanide minerals such as monazite, relative to the chondritic abundance. Bastnaesite tends to show less of a negative europium anomaly than monazite does, and hence is the major source of europium today. The accessible divalency of europium has always made it one of the easiest lanthanides to extract and purify, even when present, as it usually is, in low concentration. See also europium compounds.

Isotopes

Template:Isotopes of europium Naturally occurring europium is composed of 2 stable radioactive isotopes have half-lives that are less than 4.7612 years, and the majority of these have half-lives that are less than 12.2 seconds. This element also has 8 meta states, with the most stable being 150mEu (t½ 12.8 hours), 152m1Eu (t½ 9.3116 hours) and 152m2Eu (t½ 96 minutes).

The primary gadolinium (Gd).

Europium in nuclear power

Thermal neutron capture cross sections
Isotope 151Eu152Eu153Eu154Eu155Eu
Yield ~10low1580>2.5330
Barns 59001280031213403950
Medium-lived
fission products
t½(y)Yield%KeVβ
155Eu4.76.0330252γ
85Kr10.76.2717687γ
113mCd14.1.0003316
90Sr28.95.75182826β
137Cs30.236.08991176γ
121mSn43.9.00003390γ
151Sm90.420377

Europium is produced by nuclear fission, but as it is near the top of the mass range for fission products, the fission product yields of europium isotopes are low.

Like other lanthanides, many isotopes, especially isotopes with odd mass numbers and neutron-poor isotopes like 152Eu, have high cross sections for neutron poisons.

151Eu is the Sm-151, but since this has a long decay halflife and short mean time to neutron absorption, most 151Sm instead winds up as 152Sm.

152Eu (halflife 13.516 years) and 154Eu (halflife 8.593 years) cannot be beta decay products because 152Sm and 154Sm are nonradioactive, but 154Eu is the only long-lived "shielded" nuclide, other than neutron activation of a significant portion of the nonradioactive153Eu; however, much of this will be further converted to 155Eu.

Gadolinium-156 by the end of fuel burnup.

Overall, europium is overshadowed by samarium and others as a neutron poison.

Precautions

The toxicity of europium compounds has not been fully investigated, but there are no clear indications that europium is highly toxic compared to other heavy metals. The metal dust presents a fire and explosion hazard. Europium has no known biological role.

Isolation of Europium

Europium metal is available commercially so it is not normally necessary to make it in the laboratory, which is just as well as it is difficult to isolate as the pure metal. This is largely because of the way it is found in nature. The lanthanoids are found in nature in a number of minerals. The most important are xenotime, monazite, and bastnaesite. The first two are orthophosphate minerals LnPO4 (Ln deonotes a mixture of all the lanthanoids except promethium which is vanishingly rare) and the third is a fluoride carbonate LnCO3F. Lanthanoids with even atomic numbers are more common. The most comon lanthanoids in these minerals are, in order, cerium, lanthanum, neodymium, and praseodymium. Monazite also contains thorium and ytrrium which makes handling difficult since thorium and its decomposition products are radioactive.

For many purposes it is not particularly necessary to separate the metals, but if separation into individual metals is required, the process is complex. Initially, the metals are extracted as salts from the ores by extraction with sulphuric acid (H2SO4), hydrochloric acid (HCl), and sodium hydroxide (NaOH). Modern purification techniques for these lanthanoid salt mixtures are ingenious and involve selective complexation techniques, solvent extractions, and ion exchange chromatography.

Pure europium is available through the electrolysis of a mixture of molten EuCl3 and NaCl (or CaCl2) in a graphite cell which acts as cathode using graphite as anode. The other product is chlorine gas.

References

  • Los Alamos National Laboratory – Europium
 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Europium". A list of authors is available in Wikipedia.