Fluid dynamics



Continuum mechanics
Conservation of mass
Conservation of momentum
Navier-Stokes equations
This box: view  talk  edit
 

Fluid dynamics is the sub-discipline of nebulae in interstellar space and reportedly modelling fission weapon detonation. Some of its principles are even used in traffic engineering, where traffic is treated as a continuous fluid.

Fluid dynamics offers a systematic structure that underlies these practical disciplines and that embraces empirical and semi-empirical laws, derived from temperature, as functions of space and time.

Equations of fluid dynamics and aerodynamics

The foundational axioms of fluid dynamics are the conservation laws, specifically, conservation of mass, conservation linear of momentum (also known as Newton's Second Law of Motion), and Reynolds Transport Theorem.

In addition to the above, fluids are assumed to obey the continuum assumption. Fluids are composed of molecules that collide with one another and solid objects. However, the continuum assumption considers fluids to be continuous, rather than discrete. Consequently, properties such as density, pressure, temperature, and velocity are taken to be well-defined at infinitesimally small points, and are assumed to vary continuously from one point to another. The fact that the fluid is made up of discrete molecules is ignored.

For fluids which are sufficiently dense to be a continuum, do not contain ionized species, and have velocities small in relation to the speed of light, the momentum equations for Computational Fluid Dynamics or when they can be simplified. The equations can be simplified in a number of ways, all of which make them easier to solve. Some of them allow appropriate fluid dynamics problems to be solved in closed form.

In addition to the mass, momentum, and energy conservation equations, a thermodynamical equation of state giving the pressure as a function of other thermodynamic variables for the fluid is required to completely specify the problem. An example of this would be the perfect gas equation of state:

p= \frac{\rho R_u T}{M}

where p is pressure, ρ is density, Ru is the gas constant, M is the molecular mass and T is temperature.

Compressible vs incompressible flow

All fluids are incompressible flow. Otherwise the more general compressible flow equations must be used.

Mathematically, incompressibility is expressed by saying that the density ρ of a fluid parcel does not change as it moves in the flow field, i.e.,

\frac{\mathrm{D} \rho}{\mathrm{D}t} = 0 \, ,

where D / Dt is the convective derivatives. This additional constraint simplifies the governing equations, especially in the case when the fluid has a uniform density.

For flow of gases, to determine whether to use compressible or incompressible fluid dynamics, the Mach number of the flow is to be evaluated. As a rough guide, compressible effects can be ignored at Mach numbers below approximately 0.3. For liquids, whether the incompressible assumption is valid depends on the fluid properties (specifically the critical pressure and temperature of the fluid) and the flow conditions (how close to the critical pressure the actual flow pressure becomes). Acoustic problems always require allowing compressibility, since sound waves are compression waves involving changes in pressure and density of the medium through which they propagate.

Viscous vs inviscid flow

Viscous problems are those in which fluid friction has significant effects on the fluid motion.

The Reynolds number can be used to evaluate whether viscous or inviscid equations are appropriate to the problem.

Stokes flow is flow at very low Reynolds numbers, such that inertial forces can be neglected compared to viscous forces.

On the contrary, high Reynolds numbers indicate that the inertial forces are more significant than the viscous (friction) forces. Therefore, we may assume the flow to be an inviscid flow, an approximation in which we neglect viscosity at all, compared to inertial terms.

This idea can work fairly well when the Reynolds number is high. However, certain problems such as those involving solid boundaries, may require that the viscosity be included. Viscosity often cannot be neglected near solid boundaries because the no-slip condition can generate a thin region of large strain rate (known as vorticity. Therefore, to calculate net forces on bodies (such as wings) we should use viscous flow equations. As illustrated by Euler equations. Another often used model, especially in computational fluid dynamics, is to use the boundary layer equations, which incorporates viscosity, in a region close to the body.

The potential flows.

Steady vs unsteady flow

When all the time derivatives of a flow field vanish, the flow is considered to be steady. Otherwise, it is called unsteady. Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference. For instance, laminar flow over a sphere is steady in the frame of reference that is stationary with respect to the sphere. In a frame of reference that is stationary than the governing equations of the same problem without taking advantage of the steadiness of the flow field.

Although strictly unsteady flows, time-periodic problems can often be solved by the same techniques as steady flows. For this reason, they can be considered to be somewhere between steady and unsteady.

Laminar vs turbulent flow

Reynolds decomposition, in which the flow is broken down into the sum of a steady component and a perturbation component.

It is believed that turbulent flows obey the Direct Numerical Simulation (DNS), based on the incompressible Navier-Stokes equations, makes it possible to simulate turbulent flows with moderate Reynolds numbers (restrictions depend on the power of computer and efficiency of solution algorithm). The results of DNS agree with the experimental data.

Most flows of interest have Reynolds numbers too high for DNS to be a viable option (see: Pope), given the state of computational power for the next few decades. Any flight vehicle large enough to carry a human (L > 3 m), moving faster than 72 km/h (20 m/s) is well beyond the limit of DNS simulation (Re = 4 million). Transport aircraft wings (such as on an Airbus A300 or Boeing 747) have Reynolds numbers of 40 million (based on the wing chord). In order to solve these real life flow problems, turbulence models will be a necessity for the foreseeable future. turbulence modeling and large eddy simulation.

Newtonian vs non-Newtonian fluids

Sir viscosity, which depends on the specific fluid.

However, some of the other materials, such as emulsions and slurries and some visco-elastic materials (eg. blood, some rheology.

Other approximations

There are a large number of other possible approximations to fluid dynamic problems. Some of the more commonly used are listed below.

  • The Boussinesq approximation neglects variations in density except to calculate buoyancy forces. It is often used in free convection problems where density changes are small.
  • Lubrication theory exploits the large aspect ratio of the domain to show that certain terms in the equations are small and so can be neglected.
  • Stokes flow problems to estimate the force on, or flow field around, a long slender object in a viscous fluid.
  • The shallow-water equations can be used to describe a layer of relatively inviscid fluid with a free surface, in which surface gradients are small.
  • Darcy's law is use for flow in porous media, and works with variables averaged over several pore-widths.
  • In rotating systems, the quasi-geostrophic approximation assumes an almost perfect balance between pressure gradients and the Coriolis force. It is useful in the study of atmospheric dynamics.


Terminology in fluid dynamics

The concept of pressure is central to the study of both fluid statics and fluid dynamics. A pressure can be identified for every point in a body of fluid, regardless of whether the fluid is in motion or not. Pressure can be measured using an aneroid, Bourdon tube, mercury column, or various other methods.

Some of the terminology that is necessary in the study of fluid dynamics is not found in other similar areas of study. In particular, some of the terminology used in fluid dynamics is not used in fluid statics.


Terminology in incompressible fluid dynamics

The concepts of total pressure and pressure and can be identified for every point in a fluid flow field.

In Aerodynamics, L.J.Clancy writes (page 21): "To distinguish it from the total and dynamic pressures, the actual pressure of the fluid, which is associated not with its motion but with its state, is often referred to as the static pressure, but where the term pressure alone is used it refers to this static pressure."

A point in a fluid flow where the flow has come to rest (i.e. speed is equal to zero adjacent to some solid body immersed in the fluid flow) is of special significance. It is of such importance that it is given a special name - a pressure at the stagnation point is also of special significance and is given its own name - stagnation pressure.

Terminology in compressible fluid dynamics

In a compressible fluid, such as air, the temperature and density are essential when determining the state of the fluid. In addition to the concept of total pressure, the concepts of total temperature and total density are also essential in any study of compressible fluid flows. To avoid potential ambiguity when referring to temperature and density, many authors use the terms static temperature and static density. Static temperature is identical to temperature; and static density is identical to density; and both can be identified for every point in a fluid flow field.

The temperature and density at a stagnation point are called stagnation temperature and stagnation density.

Readers might wonder if there are such concepts as dynamic temperature or dynamic density. There aren't!

A similar approach is also taken with the thermodynamic properties of compressible fluids. Many authors use the terms total enthalpy and total entropy. The terms static enthalpy and static entropy appear to be less common, but where they are used they mean nothing more than enthalpy and entropy respectively, and the prefix 'static' is being used to avoid ambiguity with their 'total' counterparts.

References

  • Acheson, D.J. (1990) "Elementary Fluid Dynamics" (Clarendon Press).
  • Batchelor, G.K. (1967) "An Introduction to Fluid Dynamics" (Cambridge University Press).
  • Clancy, L.J. (1975) "Aerodynamics" (Pitman Publishing Limited).
  • Landau, L.D. and Lifshitz, E.M. (1987) "Fluid Mechanics" (Pergamon Press).
  • Pope, S.B. (2000) "Turbulent Flows" (Cambridge University Press).
  • Shinbrot, Marvin (1973) "Lectures on Fluid Mechanics" (Gordon and Breach).


See also

Fields of study

Mathematical equations and concepts

Types of fluid flow

Fluid properties

Fluid phenomena

Applications

  • Acoustics
  • Aerodynamics
  • Fluid power
  • Gaming
  • Meteorology
  • Naval Architecture
  • Oceanography
  • Plasma physics
  • Pneumatics
  • Pump

Miscellaneous

Other fundamental engineering topics

 
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Fluid_dynamics". A list of authors is available in Wikipedia.